已知椭圆E:=1(a>b>0)的右焦点为F,过原点和x轴不重合的直线与椭圆E相交于A,B两点,且|AF|+|BF|=2,|AB|的最小值为2.(1)求椭圆E的方程;(2)若圆x2+y2=的切线L与椭圆E相交于P,Q两点,当P,Q两点横坐标不相等时,OP(O为坐标原点)与OQ是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
如图,以正方体的三条棱所在直线为坐标轴,建立空间直角坐标系.点在正方体的对角线上,点在正方体的棱上. (1)当点为对角线的中点,点在棱上运动时,探究的最小值; (2)当点为棱的中点,点在对角线上运动时,探究的最小值; (3)当点在对角线上运动,点在棱上运动时,探究的最小值. 由以上问题,你得到了什么结论?你能证明你的结论吗?
圆与两平行线,相切,圆心在直线上,求这个圆的方程.
设定点,动点在圆上运动,以,为两边作平行四边形,求点的轨迹.
圆心在直线上,且到轴的距离恰等于圆的半径,在轴上截得的弦长为,求此圆的方程.
等腰梯形的底边长分别为6和4,高为3,求这个等腰梯形的外接圆的方程,并求这个圆的圆心坐标和半径长.