已知中心在原点的椭圆C的一个焦点为F(4,0),长轴端点到较近焦点的距离为1,A(x1,y1),B(x2,y2)(x1≠x2)为椭圆上不同的两点.(1)求椭圆C的方程.(2)若x1+x2=8,在x轴上是否存在一点D,使||=||?若存在,求出D点的坐标;若不存在,说明理由.
设全集,,.求:(1);(2).
已知函数在处取得极值,其中为常数.(1)求的值;(2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围.
如图,已知⊙与⊙外切于点,是两圆的外公切线,,为切点,与 的延长线相交于点,延长交⊙于 点,点在延长线上.(1)求证:是直角三角形;(2)若,试判断与能否一定垂直?并说明理由.(3)在(2)的条件下,若,,求的值.
设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量.(1)写出的可能取值,并求随机变量的最大值;(2)求事件“取得最大值”的概率;(3)求的分布列和数学期望与方差.
经过点,倾斜角为的直线,与曲线:(为参数)相交于两点.(1)写出直线的参数方程,并求当时弦的长;(2)当恰为的中点时,求直线的方程;(3)当时,求直线的方程;(4)当变化时,求弦的中点的轨迹方程.