如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=x上时,求直线AB的方程.
已知函数若函数在x = 0处取得极值.(1) 求实数的值;(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;(3) 证明:对任意的自然数n,有恒成立.
已知函数(其中)的图象如图所示.(1) 求函数的解析式;(2) 设函数,且,求的单调区间.
已知函数.(1) 当时,函数恒有意义,求实数a的取值范围;(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.
如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1) 证明:BD⊥平面PAC;(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
已知等差数列满足:,的前n项和为.(1)求及;(2)已知数列的第n项为,若成等差数列,且,设数列的前项和.求数列的前项和.