已知:r如图,在梯形ABCD中,AD∥BC,∠BCD=90°.对角线AC、BD相交于点E。且AC⊥BD。(1)求证:CD²=BC·AD;(2)点F是边BC上一点,连接AF,与BD相交于点G,如果∠BAF=∠DBF,求证:。
如图,在平行四边形中,以点为圆心,为半径的圆,交于点.(1)求证:≌;(2)如果,,,求的长.
解方程:.
已知:如图,⊥,∥,,.点在线段上,联结,过点作的垂线,与相交于点.设线段的长为.(1)当时,求线段的长;(2)设△的面积为,求关于的函数解析式,并写出函数的定义域;(3)当△∽△时,求线段的长.
已知:如图,抛物线与轴的负半轴相交于点,与轴相交于点(0,3),且∠的余切值为.(1)求该抛物线的表达式,并写出顶点的坐标;(2)设该抛物线的对称轴为直线,点关于直线的对称点为,与直线相交于点.点在直线上,如果点是△的重心,求点的坐标;(3)在(2)的条件下,将(1)所求得的抛物线沿轴向上或向下平移后顶点为点,写出平移后抛物线的表达式.点在平移后的抛物线上,且△的面积等于△的面积的2倍,求点的坐标.
已知:如图,在梯形中,∥,点、在边上,∥, ∥,且四边形是平行四边形.(1)试判断线段与的长度之间有怎样的数量关系?并证明你的结论;(2)现有三个论断:①;②∠+∠=90°;③∠=2∠.请从上述三个论断中选择一个论断作为条件,证明四边形是菱形.