已知a=(5cos x,cos x),b=(sin x,2cos x),设函数f(x)=a·b+|b|2+.(1)当∈时,求函数f(x)的值域;(2)当x∈时,若f(x)=8,求函数f的值;(3)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y=g(x)的图象,求函数g(x)的表达式并判断奇偶性.
(本小题满分12分)为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下: (1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:与y=哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由) 其中; (2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程。 参考公式:
(本小题满分12分)已知函数且的解集为 (Ⅰ)求k的值; (Ⅱ)若是正实数,且,求证:。
(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球. (Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率; (Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
(本小题满分10分)已知集合. (Ⅰ)若的充分条件,求的取值范围; (Ⅱ)若,求的取值范围.
已知函数 ⑴解不等式; ⑵设函数,若不等式恒成立,求实数的取值范围.