如图,两个圆形转盘A,B,每个转盘阴影部分各占转盘面积的。某“幸运转盘积分活动”规定,当指针指到A,B转盘阴影部分时,分别赢得积分1000分和2000分。先转哪个转盘由参与者选择,若第一次赢得积分,可继续转为另一个转盘,此时活动结束,若第一次未赢得积分,则终止活动。(1)记先转A转盘最终所得积分为随机量X,则X的取值分别是多少?(2)如果你参加此活动,为了赢得更多的积分,你将选择先转哪个转盘?请说明理由。
(本小题共13分)已知向量,设函数.(Ⅰ)求函数在上的单调递增区间;(Ⅱ)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
已知关于的不等式对于任意的恒成立(Ⅰ)求的取值范围;(Ⅱ)在(Ⅰ)的条件下求函数的最小值.
在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. 已知点、 的极坐标分别为、,曲线的参数方程为为参数).(Ⅰ)求直线的直角坐标方程;(Ⅱ)若直线和曲线C只有一个交点,求的值.
设矩阵M是把坐标平面上的点的纵坐标伸长到原来的2倍,横坐标保持不变的伸缩变换.(Ⅰ)求矩阵M;(Ⅱ)求矩阵M的特征值以及属于每个特征值的一个特征向量.
如图,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点.(Ⅰ)如果,点的横坐标为,求的值;(Ⅱ)若角的终边与单位圆交于C点,设角、、的正弦线分别为MA、NB、PC,求证:线段MA、NB、PC能构成一个三角形;(III)探究第(Ⅱ)小题中的三角形的外接圆面积是否为定值?若是,求出该定值;若不是,请说明理由.