设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:(1)a>0,且-3<<-;(2)函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
(本题满分13分)某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
(Ⅰ)求此运动员射击的环数的平均数;(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(m,n).求“”的概率.
设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)当时,求函数的最大值及取得最大值时的的值.
已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在,使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.
已知椭圆的左右焦点分别为,.在椭圆中有一内接三角形,其顶点的坐标,所在直线的斜率为.(Ⅰ)求椭圆的方程;(Ⅱ)当的面积最大时,求直线的方程.
已知函数,,且.(Ⅰ)若,求的值;(Ⅱ)当时,求函数的最大值;(Ⅲ)求函数的单调递增区间.