已知a,b∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3-x2+bx的图象在交点(0,0)处有公共切线.(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;(2)设-1<x1<x2,当x∈(x1,x2)时,证明:.
(本小题满分12分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:
(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体, 从中任取2人, 求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取个人,其中35岁以下48人,50岁以上10人,再从这个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求、的值.
(本小题满分12分)已知函数(1)求的值;(2)设求的值.
(本小题满分12分)已知函数f(x)=x3+x2-2.(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分已知二次函数f(x) 对任意x∈R,都有f (1-x)="f" (1+x)成立,设向量a="(sinx,2)," b=(2sinx,),c=(cos2x,1),d=(1,2)。 (1)分别求a·b和c·d的取值范围;(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.
(本小题满分12分)已知向量a=(cosx,2),b=(sinx,-3).(1)当a∥b时,求3cos2x-sin2x的值;(2)求函数f(x)=(a-b)·a在x∈[-,0]上的值域.