平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:(1)求3a+b-2c.(2)求满足a=mb+nc的实数m,n.(3)若(a+kc)∥(2b-a),求实数k.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球次均未命中的概率为.(1)求乙投球的命中率;(2)若甲投球次,乙投球次,两人共命中的次数记为,求的分布列和数学期望.
已知数列是首项,公比为的等比数列,(1)证明: (2)计算:
已知(1)证明函数在上是增函数;(2)用反证法证明方程没有负数根.
一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用表示转速(单位转/秒),用表示每小时生产的有缺点物件个数,现观测得到的4组观测值为(8,5),(12,8),(14,9),(16,11).(1)假定与之间有线性相关关系,求对的回归直线方程.(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)(参考公式)
求过点P(,且被圆C:截得的弦长等于8的直线方程。