某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t,今该公司将5亿元投资于这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元).求:(1)y关于x的函数表达式.(2)总利润的最大值.
已知椭圆的离心率,且直线是抛物线的一条切线. (1)求椭圆的方程; (2)点P 为椭圆上一点,直线,判断l与椭圆的位置关系并给出理由; (3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
已知,函数. (Ⅰ)当时, (1)若,求函数的单调区间; (2)若关于的不等式在区间上有解,求的取值范围; (Ⅱ)已知曲线在其图象上的两点,()处的切线分别为.若直线与平行,试探究点与点的关系,并证明你的结论.
如图,在四棱锥中,底面为矩形,. (1)求证,并指出异面直线PA与CD所成角的大小; (2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.
已知数列为等比数列,其前n项和为,且满足,成等差数列. (1)求数列的通项公式; (2)已知,记,求数列前n项和.
设函数. (1)求的值域; (2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.