动点到定点与到定直线,的距离之比为 . (1)求的轨迹方程;(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点、.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.
(本小题满分12分) 已知0<a<的最小正周期,求.
某厂生产的圆柱形零件的外直径ξ服从正态分布N(4,0.25),质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外直径为5.7cm,试问该厂生产的这批零件是否合格?
已知正态总体N(1,4),.求F(3)。
某班有48名同学,一次考试后数学成绩服从正态分布.平均分为80,标准差为10,问从理论上讲在80分至90分之间有多少人?
若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在1%以下设计的,如果某地成年男子的身高(单位:㎝),则该地公共汽车门的高度应设计为多高?