在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线交椭圆C于A,B两点,且△ABF2的周长为8.过定点M(0,3)的直线l1与椭圆C交于G,H两点(点G在点M,H之间).(1)求椭圆C的方程;(2)设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由.
本小题满分12分)已知集合,. (1)当时,求集合,; (2)若,求实数m的取值范围.
(本小题满分12分)已知全集,若,,求实数的值.
(本小题14分)如图,已知某椭圆的焦点是,过点并垂直于x轴的直线与椭圆的一个交点为B,且,椭圆上不同的两点满足条件:、、成等差数列. (1)求该椭圆的方程; (2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为,求m的取值范围.
(本小题13分)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉价格为1800元,面粉的保管费为平均每天每6吨18元(从面粉进厂起开始收保管费,不足6 吨按6 吨算),购面粉每次需要支付运费900元,设该厂每天购买一次面粉。(注:该厂每次购买的面粉都能保证使用整数天) (Ⅰ)计算每次所购买的面粉需支付的保管费是多少? (Ⅱ)试求值,使平均每天所支付总费用最少?并计算每天最少费用是多少?
(本小题12分)已知B(-2,0),C(2,0)是ABC的两个顶点,且满足, (Ⅰ)求顶点A的轨迹方程 (Ⅱ)过点C作倾斜角为的直线交点A的轨迹于E、F两点,求|EF|