如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2)所示). (1)求证:OF∥平面ACD;(2)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求点G到平面ACD的距离;若不存在,请说明理由.
(本小题满分12分)已知数列{}为公差不为零的等差数列,=1,各项均为正数的等比数列{}的第1 项、第3项、第5项分别是、、.(I)求数列{}与{}的通项公式;(Ⅱ)求数列{}的前项和.
已知数列中,且()。(1)求,的值;(2)设,是否存在实数,使数列为等差数列,若存在请求其通项,若不存在请说明理由。
设函数 (其中>0,),且的图象在y轴右侧的第一个最高点的横坐标为.(1)求的最小正周期;(2)如果在区间上的最小值为,求a的值.
在中,,. (Ⅰ)求的值;(Ⅱ)设的面积,求的长.
已知盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个. (1)从中任取1个球, 求取得红球或黑球的概率;(2)列出一次任取2个球的所有基本事件;(3)从中取2个球,求至少有一个红球的概率.