如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
在中,. (Ⅰ)求的取值范围; (Ⅱ)若为锐角,求的最大值并求出此时角的大小.
已知向量与互相垂直,其中. (Ⅰ)求和的值; (Ⅱ)若,,求的值.
设 (Ⅰ)若,求实数的值; (Ⅱ)求在方向上的正射影的数量.
已知函数f (x) = (1)试判断当的大小关系; (2)试判断曲线和是否存在公切线,若存在,求出公切线方程,若不存在,说明理由; (3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
设是各项都为正数的等比数列, 是等差数列,且, (1)求,的通项公式; (2)记的前项和为,求证:; (3)若均为正整数,且记所有可能乘积的和,求证:.