如图,F是椭圆的右焦点,以点F为圆心的圆过原点O和椭圆的右顶点,设P是椭圆上的动点,P到椭圆两焦点的距离之和等于4.(1)求椭圆和圆的标准方程;(2)设直线l的方程为x=4,PM⊥l,垂足为M,是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
如图,,为椭圆:的左、右两个焦点,直线:与椭圆交于两点,,已知椭圆中心点关于的对称点恰好落在的左准线上.⑴求准线的方程;⑵已知,,成等差数列,求椭圆的方程.
如图,给出定点和直线,是直线上的动点,的角平分线交于点,求的轨迹方程,并讨论方程表示的曲线类型与值的关系.
已知梯形中,,点分有向线段所成的比为,双曲线过,,三点,且以,为焦点,当时,求双曲线离心率的取值范围.
已知双曲线的离心率,左、右焦点分别为,,左准线为,能否在双曲线的左支上找到一点,使得是到的距离与的等比中项?
求出过定点且与抛物线只有一个公共点的直线的方程.