如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.(1)求证:AB∥平面CDE;(2)求证:平面ABCD⊥平面ADE.
设数列为等差数列,且;数列的前n项和为. (1)求数列,的通项公式; (2)若为数学的前n项和,求.
如图,在四棱锥中中,底面为菱形,,为的中点. (1)若,求证:平面平面; (2)若平面平面,且,点在线段上,且,求三棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求、; (2)若从高校、抽取的人中选2人作专题发言,求这2人都来自高校的概率.
已知向量,函数的最小正周期为. (1)求函数的单调增区间; (2)如果△ABC的三边所对的角分别为,且满足的值.
已知函数,其中. (1)当时,求曲线在原点处的切线方程; (2)求的单调区间; (3)若上存在最大值和最小值,求的取值范围.