已知椭圆过点,且长轴长等于4.(1)求椭圆C的方程;(2)是椭圆C的两个焦点,圆O是以为直径的圆,直线与圆O相切,并与椭圆C交于不同的两点A,B,若,求的值.
(本小题满分12分) 若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为. (1)设,求的取值范围; (2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程.
(本小题满分11分)(注意:在试题卷上作答无效) 已知为坐标原点,向量,点是直线上的一点,且点分有向线段的比为. (1)记函数,,讨论函数的单调性,并求其值域; (2)若三点共线,求的值.
(本小题满分10分)(注意:在试题卷上作答无效) 已知等比数列中,,分别为的三内角的对边,且. (1)求数列的公比; (2)设集合,且,求数列的通项公式.
( 本小题满分12分) 已知集合中的元素都是正整数,且,对任意的且,有. (Ⅰ)求证:; (Ⅱ)求证:; (Ⅲ)对于,试给出一个满足条件的集合
( 本小题满分12分) 已知点是离心率为的椭圆:上的一点.斜率为的直线交椭圆于、两点,且、、三点不重合. (Ⅰ)求椭圆的方程; (Ⅱ)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由? (Ⅲ)求证:直线、的斜率之和为定值.