在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B.(1)求圆Q的面积;(2)求k的取值范围;(3)是否存在常数k,使得向量+与共线?如果存在,求k的值;如果不存在,请说明理由.
设正整数构成的数列{an}使得a10k﹣9+a10k﹣8+…+a10k≤19对一切k∈N*恒成立.记该数列若干连续项的和为S(i,j),其中i,j∈N*,且i<j.求证:所有S(i,j)构成的集合等于N*.
设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.
设a,b,c为正数,利用排序不等式证明a3+b3+c3≥3abc.
设a,b,c是正实数,求证:aabbcc≥(abc).
设a1,a2,…,an为实数,证明:≤.