已知椭圆C:=1(a>b>0)的离心率为,一条准线l:x=2.(1)求椭圆C的方程;(2)设O为坐标原点,M是l上的点,F为椭圆C的右焦点,过点F作OM的垂线与以OM为直径的圆D交于P,Q两点.①若PQ=,求圆D的方程;②若M是l上的动点,求证点P在定圆上,并求该定圆的方程.
已知集合,, (1)若,求的取值范围; (2)是否存在实数使得?若存在求出的取值范围;若不存在,请说明理由.
如图,为圆的直径,为圆周上异于、的一点,垂直于圆所在的平面,于 点,于点. (1)求证:平面; (2)若,,求四面体的体积.
在锐角中,分别是角的对边,,. (1)求的值;(2)若,求的值.
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果 按如下方式分成五组:第一组,第二组,,第五组.按上述分组 方法得到的频率分布直方图如图所示. (1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好 的人数; (2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
已知函数满足,,且当时,. (1)证明:函数是周期函数;(2)若,求的值.