商店出售茶壶和茶杯,茶壶单价为每个20元,茶杯单价为每个5元,该店推出两种促销优惠办法:(1)买1个茶壶赠送1个茶杯;(2)按总价打9.2折付款。某顾客需要购买茶壶4个,茶杯若干个,(不少于4个),若设购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更省钱?
在中,分别是角A,B,C的对边,且满足. (1)求角B的大小; (2)若最大边的边长为,且,求最小边长.
已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.
如图,已知椭圆:的离心率为 ,点为其下焦点,点为坐标原点,过的直线 :(其中)与椭圆相交于两点,且满足:. (1)试用 表示 ; (2)求 的最大值; (3)若 ,求 的取值范围.
已知函数. (1)解关于的不等式; (2)若在区间上恒成立,求实数的取值范围.
已知等差数列的首项,公差,且分别是正数等比数列的项. (1)求数列与的通项公式; (2)设数列对任意均有成立,设的前项和为,求.