如图,在三棱锥中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.
已知函数,. (1)求函数的最小正周期和单调递增区间; (2)若函数图象上的两点的横坐标依次为,为坐标原点,求的外接圆的面积.
已知函数,满足,且,为自然对数的底数. (1)已知,求在处的切线方程; (2)若存在,使得成立,求的取值范围; (3)设函数,为坐标原点,若对于在时的图象上的任一点,在曲线上总存在一点,使得,且的中点在轴上,求的取值范围.
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点作的平行线交曲线于两个不同的点. (1)求曲线的方程; (2)试探究和的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由; (3)记的面积为,的面积为,令,求的最大值.
已知数列中,,,记为的前项的和,,. (1)判断数列是否为等比数列,并求出; (2)求.
如图,在四棱锥中,底面为正方形,平面,已知,为线段的中点. (1)求证:平面; (2)求二面角的平面角的余弦值.