已知圆,直线与圆相切,且交椭圆于两点,c是椭圆的半焦距, (1)求m的值;(2)O为坐标原点,若,求椭圆的方程;(3)在(2)的条件下,设椭圆的左右顶点分别为A,B,动点,直线与直线分别交于M,N两点,求线段MN的长度的最小值
已知函数,()在处取得最小值. (Ⅰ)求的值; (Ⅱ)若在处的切线方程为,求证:当时,曲线不可能在直线的下方; (Ⅲ)若,()且,试比较与的大小,并证明你的结论.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)如果对于任意的,总成立,求实数的取值范围; (Ⅲ)设函数,,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.
湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:,为常数,当万元时,万元;当万元时,万元.(参考数据:,,) (Ⅰ)求的解析式; (Ⅱ)求该景点改造升级后旅游利润的最大值.(利润=旅游收入-投入)
已知为坐标原点,向量,,,点满足. (Ⅰ)记函数,,讨论函数的单调性,并求其值域; (Ⅱ)若三点共线,求的值.
已知命题,,命题,使得.若“或为真”,“且为假”,求实数的取值范围.