函数,其中为实常数。(1)讨论的单调性;(2)不等式在上恒成立,求实数的取值范围;(3)若,设,。是否存在实常数,既使又使对一切恒成立?若存在,试找出的一个值,并证明;若不存在,说明理由.
设椭圆的左焦点为,上顶点为,过点与垂直的直线分别交椭圆和轴正半轴于,两点,且分向量所成的比为8∶5.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线:相切,求椭圆方程.
数列中,且满足 ⑴求数列的通项公式;⑵设,求;⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
如图,正四棱柱中,,点在上且.(Ⅰ)证明:平面;(Ⅱ)求二面角的大小.
一个口袋中有大小相同的2个白球和4个黑球,每次从袋中随机地摸出1个球,并换入1只相同大小的黑球,这样继续下去,求:(I)摸2次摸出的都是白球的概率;(II)第3次摸出的是白球的概率。
已知函数. (Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.