函数,其中为实常数。(1)讨论的单调性;(2)不等式在上恒成立,求实数的取值范围;(3)若,设,。是否存在实常数,既使又使对一切恒成立?若存在,试找出的一个值,并证明;若不存在,说明理由.
(本小题满分12分) 在一次人才招聘会上,有三种不同的技工面向社会招聘,已知某技术人员应聘三种技工被录用的概率分别是0.8、0.5、0.2(允许技工人员同时被多种技工录用). (1)求该技术人员被录用的概率; (2)设表示该技术人员被录用的工种数与未被录用的工种数的乘积,求的分布列和数学期望.
(本小题满分10分) 在△ABC中,角A、B、C对边分别是,且满足. (1)求角A的大小; (2)求的最大值,并求取得最大值时角B、C的大小.
选修4-5:不等式选讲 已知且,若恒成立, (Ⅰ)求的最小值; (Ⅱ)若对任意的恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程 (Ⅰ)求直线(为参数)的倾斜角的大小. (Ⅱ)在极坐标系中,已知点,是曲线上任意一点,求的面积的最小值.
选修4-2:矩阵与变换已知矩阵,向量, (Ⅰ)求矩阵A的特征值和对应的特征向量; (Ⅱ)求向量,使得.