已知直线l1:4x-3y+6=0和直线l2:x=- (p>2).若拋物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.(1)求抛物线C的方程;(2)若拋物线上任意一点M处的切线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标;若不存在,请说明理由.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量. (1) 将利润表示为月产量的函数; (2) 当月产量为何值时,公司所获利润最大?最大利润为多少元(总收益=总成本+利润) ?
设函数. (1) 若,求的取值范围; (2) 求的最值,并给出取最值时对应的的值
已知函数 (1)求函数的定义域; (2)求证:函数是增函数; (3)求函数的最小值.
设定义在上的奇函数是减函数,若,求实数的取值范围.
已知集合,,求,,,.