(本小题满分13分)已知, 是平面上一动点, 到直线上的射影为点,且满足(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作曲线的两条弦, 设所在直线的斜率分别为, 当变化且满足时,证明直线恒过定点,并求出该定点坐标.
已知圆,若椭圆的右顶点为圆的圆心,离心率为. (1)求椭圆的方程; (2)若存在直线l:y=kx,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段AB上,且,求圆M的半径r的取值范围.
在几何体ABCDE中,AB=AD=BC=CD=2,,且平面,平面平面. (1)当平面时,求的长; (2)当时,求二面角的大小.
设函数,的图象关于直线对称,其中为常数,且. (1)求函数的最小正周期; (2)若的图象经过点,求函数在上的值域.
如图,在平面直角坐标系中,点A(0,3),直线:,设圆的半径为1,圆心在上. (1)若圆心也在直线上,过点A作圆的切线,求切线的方程; (2)若圆上存在点,使,求圆心的横坐标的取值范围.
正项数列满足:. (1)求数列的通项公式; (2)令,求数列的前项和.