已知椭圆C:=1(a>b>0)上任一点P到两个焦点的距离的和为2,P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).(1)若= (O为坐标原点),求|y1-y2|的值;(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.
已知数列 a n 中 a 1 = 2 , a n + 1 = ( 2 - 1 ) ( a n + 2 ) , n = 1 , 2 , 3 . . . . . . . .
(Ⅰ)求 a n 的通项公式; (Ⅱ)若数列 b n 中 b 1 = 2 , b n + 1 = 3 b n + 4 2 b n + 3 , n = 1 , 2 , 3 . . . . . . . ,证明: 2 < b n ≤ a 4 n - 3 , n = 1 , 2 , 3 . . . . . . .
已知椭圆 x 2 3 + y 2 2 = 1 的左、右焦点分别为 F 1 , F 2 .过 F 1 的直线交椭圆于 B , D 两点,过 F 2 的直线交椭圆于 A , C 两点,且 A B ⊥ C D ,垂足为 P . (Ⅰ)设 P 点的坐标为 x 0 , y 0 ,证明: x 2 0 3 + y 0 2 2 < 1 ; (Ⅱ)求四边形 A B C D 的面积的最小值.
设函数 f x = e x - e - x
(Ⅰ)证明: f x 的导数 f ` x ⩾ 2 ; (Ⅱ)若对所有 x ≥ 0 都有 f x ⩾ a x ,求 a 的取值范围.
四棱锥 S - A B C D 中,底面 A B C D 为平行四边形,侧面 S B C ⊥ 底面 A B C D ,已知 ∠ A B C = 45 ° , A B = 2 , B C = 2 2 , S A = S B = 3 .
(Ⅰ)证明 S A ⊥ B C ; (Ⅱ)求直线 S D 与平面 S A B 所成角的大小.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数 ξ 的分布列为
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元. η 表示经销一件该商品的利润. (Ⅰ)求事件 A : "购买该商品的3位顾客中,至少有1位采用1期付款"的概率 P A ; (Ⅱ)求 η 的分布列及期望 E η .