已知椭圆C:=1(a>b>0)上任一点P到两个焦点的距离的和为2,P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).(1)若= (O为坐标原点),求|y1-y2|的值;(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.
设,(1)若在处有极值,求a; (2)若在上为增函数,求a的取值范围.
计算由曲线,直线x+y=3以及两坐标轴所围成的图形的面积S.
已知函数,设曲线在点处的切线为,若与圆相切,求的值.
(本小题满分12分) 已知函数在其定义域上满足. (1)函数的图象是否是中心对称图形?若是,请指出其对称中心(不证明); (2)当时,求x的取值范围; (3)若,数列满足,那么: ①若,正整数N满足时,对所有适合上述条件的数列,恒成立,求最小的N; ②若,求证:.
(本小题满分12分) 如图,设是椭圆的左焦点,直线为对应的准线,直线与轴交于点,为椭圆的长轴,已知,且. (1)求椭圆的标准方程; (2)求证:对于任意的割线,恒有; (3)求三角形△ABF面积的最大值.