(本小题满分14分)如图,在长方体中,,,点在棱上移动. ⑴ 证明://平面; ⑵证明:⊥; ⑶ 当为的中点时,求四棱锥的体积.
将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.(1)求满足条件a+b≥9的概率;(2)求直线ax+by+5=0与x2+y2=1相切的概率(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
已知向量(1)若,求的值;(2)设,若,求的值.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm)获得身高数据如下:
(1)完成数据的茎叶图(以百位十位为茎,以个位为叶),并求甲班样本数据的中位数、众数;(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
已知向量(1)证明: (2)若向量满足,且,求.
已知函数(1)求函数的最小正周期及单调递减区间;(2)若将函数的图像向右平移个单位,得到函数的图像,求在区间上的最大值和最小值,并求出相应的x的取值。