已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
平面内给定三个向量,回答下列问题:(Ⅰ)求满足的实数m,n; (Ⅱ)若,求实数k;
(本小题满分10分)有一根钢管,长度是4000mm,要截成500mm和600mm两种毛坯,且这两种数量比大于配套,问怎样截取所得毛坯总数最多?
(本小题满分12分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。(1)求数列的通项公式(用表示);(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。
(本小题满分12分)某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池(平面图如图)。由于地形限制,长、宽都不能超过16米。如果池外圈四周壁造价为每平方米400元,中间两条隔墙造价为每平方米248元,池底造价为每平方米80元,池壁的厚度不计。试设计污水处理池的长和宽,使总造价最低,并求出最低总造价。(池深用h 表示)
(本小题满分12分)已知函数,若对任意恒成立,试求实数的取值范围。