设矩阵M= (其中a>0,b>0).(1)若a=2,b=3,求矩阵M的逆矩阵M-1;(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:+y2=1,求a,b的值.
(本小题满分12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:;(Ⅱ)证明:平面;(Ⅲ)求二面角的余弦值.
(本小题满分12分) 在△ABC中,角A,B,C对边分别为满足:,(Ⅰ)求角A 的大小;(Ⅱ)求的最大值,并求取得最大值时角B,C的大小.
(本小题满分12分)已知函数.(Ⅰ)若直线与函数的图像相切,求实数的值;(Ⅱ)证明曲线与曲线有唯一的公共点;(Ⅲ)设,试比较与的大小.
(本小题满分12分)如图,四棱锥P ABCD中,底面ABCD为平行四边形,,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AD=2,,求点到平面的距离.
(本小题满分12分)某中学欲制定一项新的制度,学生会为此进行了问卷调查,所有参与问卷调查的人中,持有“支持”、“不支持”和“既不支持也不反对”的人数如下表所示:
(Ⅰ)在所有参与问卷调查的人中,用分层抽样的方法抽取个人,已知从“支持”的人中抽取了45人,求的值;(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有1人是高一学生的概率.