已知函数f(x)=ax2+ax和g(x)=x-a,其中aÎR且a¹0. (1)若函数f(x)与g(x)的图像的一个公共点恰好在x轴上,求的值; (2)若函数f(x)与g(x)图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由. (3)若p和q是方程f(x)=g(x)的两根,且满足0<p<q<,证明:当xÎ(0,p)时,g(x)<f(x)<p-a..
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,(Ⅰ)求证:FH∥平面EDB;(Ⅱ)求证:AC⊥平面EDB;(Ⅲ)求四面体B—DEF的体积.
如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。(Ⅰ)证明:平面 平面;(Ⅱ)若,60°,求四棱锥的体积。
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且+=(Ⅰ)求; (Ⅱ)若直线的斜率为1,求b的值。
已知直线的参数方程:(为参数)和圆的极坐标方程:.(Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(Ⅱ)判断直线和圆的位置关系.
(1)(满分7分) 选修4一2:矩阵与变换二阶矩阵对应的变换将点与分别变换成点与.(Ⅰ)求矩阵;(Ⅱ)设直线在矩阵对应变换的作用下得到直线: ,求的方程.