设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E(η)=,D(η)=,求a∶b∶c.
已知变换T把平面上的点A(2,0),B(3,1)分别变换成点A′(2,1),B′(3,2),试求变换T对应的矩阵M.
已知:如图所示,△ABC内接于⊙O,过点A的切线交BC,的延长线于点P,D为AB的中点,DP交AC于M.求证:=.
如图所示,设△ABC的外接圆的切线AE与BC的延长线交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EC·EB.
已知:如图所示,在△ABC中,AB=AC,O是△ABC的外心,延长CA到P,再延长AB到Q,使AP=BQ.求证:O,A,P,Q四点共圆.
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.(1)求证:△DFE∽△EFA;(2)如果EF=1,求FG的长.