假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.
已知定点A(4,0)和圆x2+y2=4上的动点B,点P分AB之比为 2∶1,求点P的轨迹方程.
求通过原点且与两直线l1:x+2y-9=0,l2:2x-y+2=0相切的圆的方程.
光线l过点P(1,-1),经y轴反射后与圆C:(x-4)2+(y-4)2=1相切,求光线l所在的直线方程.
设AB是圆x2+y2=1的一条直径,以AB为直角边、B为直角顶点,逆时针方向作等腰直角三角形ABC.当AB变动时,求C点的轨迹.