一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.
(本小题共14分) 已知函数. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)讨论函数的单调性.
(本小题共13分) 某中学高中学生有900名,学校要从中选出9名同学作为国庆60周年庆祝活动的志愿者.已知高一有400名学生,高二有300名学生,高三有200名学生.为了保证每名同学都有参与的资格,学校采用分层抽样的方法抽取. (Ⅰ)求高一、高二、高三分别抽取学生的人数; (Ⅱ)若再从这9名同学中随机的抽取2人作为活动负责人,求抽到的这2名同学都是高一学生的概率; (Ⅲ)在(Ⅱ)的条件下,求抽到的这2名同学不是同一年级的概率.
(本小题共14分) 在三棱锥中,和是边长为的等边三角形,,分别是的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面⊥平面; (Ⅲ)求三棱锥的体积.
(本小题共12分) 已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)求函数在上的最大值与最小值.
设函数f(x)=-6x+5,XR (1) 求函数f(x)的单调区间和极值 (2) 若关于x的方程f(x)=a有三个不同实根,求实数a的范围. (3) 已知当x(1,+∞)时,f(x)≥K(x-1)恒成立,求实数K的取值范围。