一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望.
已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且 (1)求数列、的通项公式; (2)若,求数列的前项和
已知函数的图象与轴交于,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和 (1)求函数的解析式及的值; (2)若锐角满足求.
已知函数(x>0). (1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围; (2)若a≥2,b=1,求方程在(0,1]上解的个数.
已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程; (2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.
已知数列满足, ,. (1)求证:是等比数列; (2)求证:是等比数列并求数列的通项公式; (3)设,且对于恒成立,求的取值范围.