如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N. (1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.
本大题9分) 已知与圆C:相切的直线l分别交x轴和y轴正半轴于A,B两点,O为原点,且|OA|=a,|OB|=b(a>2,b>2)。 (1)求证:(a-2)(b-2)=2; (2)求△AOB面积的最小值。
(本大题9分) 求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行; (2)经过点Q(-1,3)且与直线x+2y-1=0垂直; (3)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等; (4)经过点N(-1,3)且在轴的截距与它在y轴上的截距的和为零.
(本大题8分)已知正方体,求: (1)异面直线与所成的角; (2)证明:直线//平面C (3)二面角D— AB—C的大小;
(本大题8分) 在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问 (1)在y轴上是否存在点M,满足? (2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
(本大题8分) 命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围。