某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求的值.
已知函数,且在处取得极值.(1)求的值;(2)若当时,恒成立,求的取值范围;(3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.
已知以点为圆心的圆与直线相切.过点的动直线与圆相交于两点,是的中点.(1)求圆的方程; (2)当时,求直线的方程.(用一般式表示)
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次实验,得到数据如下:
(1)作出散点图;(2)求出关于的线性回归方程;(3)预测加工10个零件需要多少小时?注:可能用到的公式:,,
已知函数。(1)求函数的单调区间;(2)求在曲线上一点的切线方程。
已知两直线。求分别满足下列条件的的值.(1)直线过点,并且直线与垂直;(2)直线与直线平行,并且直线在轴上的截距为.