某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(1)求出f(5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求的值.
在直角坐标系上取两个定点,再取两个动点,且. (Ⅰ)求直线与交点的轨迹的方程; (Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
已知正方形的边长为2,.将正方形沿对角线折起, 使,得到三棱锥,如图所示. (1)当时,求证:; (2)当二面角的大小为时,求二面角的正切值.
已知等比数列满足,且是,的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求使 成立的的最小值.
已知函数. (Ⅰ) 求函数的最小值和最小正周期; (Ⅱ) 已知内角的对边分别为,且,若向量与共线,求的值.
已知在递增等差数列中,,成等比数列,数列的前n项和为,且. (1)求数列、的通项公式;(2)设,求数列的前和.