已知定义在上的函数是偶函数,且时, 。(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且. (Ⅰ)求证:EF∥平面BDC1; (Ⅱ)求二面角E-BC1-D的余弦值.
各项均为正数的等比数列{an}中,已知a2="8," a4="128," bn=log2an. (1)求数列{an}的通项公式; (2)求数列{bn}的前n项和Sn (3)求满足不等式的正整数n的最大值
已知,,直线与函数、的图象都相切,且与函数的图象的切点的横坐标为. (Ⅰ)求直线的方程及的值; (Ⅱ)若(其中是的导函数),求函数的最大值; (Ⅲ)当时,求证:.
已知函数 (Ⅰ)求函数的图像在处的切线方程; (Ⅱ)设实数,求函数在上的最小值.
已知函数,其中为实数. (Ⅰ) 若在处取得的极值为,求的值; (Ⅱ)若在区间上为减函数,且,求的取值范围.