如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△的三个顶点都在格点上.(1)建立如图所示的直角坐标系,请在图中标出△的外接圆的圆心的位置,并填写: ①圆心的坐标:(_______,_______);②⊙的半径为_______ .(2)将△绕点逆时针旋转得到△,画出图形,并求线段扫过的图形的面积.
(本大题满分8分,每小题4分) (1)计算: (2)解方程:
(本题10分)在校际运动会上,身高1.8米的李梦晨(AB)同学,把铅球抛到离脚底(B)9米远的P点,李梦晨同学所抛的铅球在到达最大高度时,距其脚底(B)4米,聪明的你,请你参照图示,帮助李梦晨同学求出此铅球运动的轨迹方程.
.(本题8分) 如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且 ∠DBA=∠BCD. (1)根据你的判断:BD是⊙O的切线吗?为什么?. (2)若点E是劣弧BC上一点,AE与BC相交于点F, 且△BEF的面积为10,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.
(本题10分) 据我们调查,连云港市“欣欣”家电商场电视柜,今年一月至六月份销售型号为“HH-2188X”的长虹牌电视机的销量如下:
一、求上半年销售型号为“HH-2188X”的长虹牌电视机销售量的平均数、中位数、众数; 二、由于此型号的长虹牌电视机的质量好,消费者满意度很高,商场计划八月份销售此型号的电视机72台,与上半年平均月销售量相比,七、八月销售此型号的电视机平均每月的增长率是多少?
.(本题15分) 马田同学将一张圆桌紧靠在矩形屋子的一角,与相邻两面墙相切,她把切点记为A、B,然后,她又在桌子边缘上任取一点P(异于A、B),通过计算∠APB的度数,她惊奇的发现∠APB的度数的,正好都和她今天作业中的一条抛物线与x轴的交点的横坐标完全相同,她作业中的那条抛物线还经过点C(10,17).聪明的你:(1)请你求出∠APB的度数 (2)请你求出马田同学作业中的 那条抛物线的对称轴方程.