已知函数f(x)=2sin ωx·cos ωx+2cos2ωx-(其中ω>0),且函数f(x)的周期为π.(1)求ω的值;(2)将函数y=f(x)的图象向右平移个单位长度,再将所得图象各点的横坐标缩小到原来的倍(纵坐标不变)得到函数y=g(x)的图象,求函数g(x)在上的单调区间.
如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点.已知A、B的横坐标分别为、.求: (1) tan(α+β)的值; (2) α+2β的值.
已知cos α=,cos(α+β)=-,且α、β∈,求cos(α-β)的值.
已知α、β均为锐角,且sinα=,tan(α-β)=-. (1) 求sin(α-β)的值; (2) 求cosβ的值.
已知α、β∈,sinα=,tan(α-β)=-,求cosβ的值.
已知0<β<<α<π,cos(-α)=,sin(+β)=,求sin(α+β)的值.