辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等次相互独立.(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.(3)求X的数学期望.
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.()求分别满足下列条件的a,b的值. (1)直线l1过点(-3,-1),并且直线l1与l2垂直; (2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
在中,角的对边分别为,且. (1)求的值; (2)若求的面积.
已知椭圆的两个焦点分别为、,短轴的两个端点分别为. (1)若为等边三角形,求椭圆的方程; (2)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.
已知公差不为零的等差数列的前3项和,且、、成等比数列. (1)求数列的通项公式及前n项的和; (2)设的前n项和,证明:; (3)对(2)问中的,若对一切恒成立,求实数的最小值.
如图,要设计一张矩形广告,该广告含有左右大小相等在两个矩形栏目(即图中在阴影部分),这两栏的面积之和为18000cm2,四周空白的宽度为10cm,两栏中间的中缝空白的宽度为5cm,问怎样设计每个栏目的宽和高,能使整张广告的面积最小?