如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.(1)求直线与平面所成角的余弦值;(2)求点到平面的距离;(3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
(本小题满分13分)已知椭圆的中心在原点,焦点在y轴上,离心率为,且椭圆经过圆的圆心C。(I)求椭圆的标准方程;(II)设直线与椭圆交于A、B两点,点且|PA|=|PB|,求直线的方程。
(本小题满分12分)如图,在多面体ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。(I)求证:EF//平面ABC;(II)求证:平面BCD;(III)求多面体ABDEC的体积。
(本小题满分12分)已知(I)求的最大值,及当取最大值时x的取值集合。(II)在三角形ABC中a、b、c分别是角A、B、C所对的边,对定义域内任意,且b=1,c=2,求a的值。
(本小题满分12分)某汽车厂生产A、B两类轿车,每类轿车均有舒适型和标准型两种,某月的产量如下表:按分层抽样的方法在该月生产的轿车中抽取50辆,其中A类轿车20辆。(I)求x的值;(II)用分层抽样的方法在B类轿车中抽取一个容量为6的样本,从样本中任意取2辆,求至少有一辆舒适轿车的概率。
(本小题满分12分)已知函数=在处取得极值.(1)求实数的值;(2) 若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;(3) 证明:.参考数据: