盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(1)在一次试验中,求卡片上的数字为正数的概率;(2)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(3)在两次试验中,记卡片上的数字分别为X,η,试求随机变量X=X·η的分布列与数学期望E(X).
已知公比不为的等比数列的首项,前项和为,且成等差数列. (1)求等比数列的通项公式; (2)对,在与之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和.
已知二项式的展开式中第2项为常数项,其中,且展开式按的降幂排列. (1)求及的值. (2)数列中,,,,求证:能被4整除.
如图,是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°. (1)求二面角的的余弦值; (2)求点到面的距离.
已知,且,求的最小值.
已知曲线的极坐标方程是,直线的参数方程是(为参数). 设直线与轴的交点是,是曲线上一动点,求的最大值.