设椭圆的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为.(Ⅰ)求椭圆的方程;(Ⅱ)若直线交椭圆于两点,为椭圆上一点,求面积的最大值.
在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin Bsin C的值.
已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的部分图象如图所示. (1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cos B=bcos C,求f的取值范围.
已知函数f(x)=sin2x+sin xcos x,x∈.(1)求f(x) 的零点;(2)求f(x)的最大值和最小值.
已知a=(sin α,1), b=(cos α,2),α∈.(1)若a∥b,求tan α的值;(2)若a·b=,求sin 的值.
已知函数f(x)=ax+x2,g(x)=xln a,a>1.(1)求证:函数F(x)=f(x)-g(x)在(0,+∞)上单调递增;(2)若函数y=-3有四个零点,求b的取值范围;(3)若对于任意的x1,x2∈[-1,1]时,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范围.