解关于的不等式(其中).
已知椭圆C的两个焦点分别为F1(﹣1,0)、F2(1,0),短轴的两个端点分别为B1,B2 (1)若△F1B1B2为等边三角形,求椭圆C的方程; (2)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.
已知函数f(x)=2x2﹣(a+2)x+a. (Ⅰ)当a>0时,求关于x的不等式f(x)>0解集; (Ⅱ)当x>1时,若f(x)≥﹣1恒成立,求实数a的最大值.
已知椭圆C:+=1(a>b>0)的离心率为,其中左焦点F(﹣2,0). (1)求椭圆C的方程; (2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.
在等差数列{an}中,公差d=2,a2是a1与a4的等比中项. (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,数列的前n项和为Tn,求Tn.
已知在等比数列{an}中,a1=1,且a2是a1和a3﹣1的等差中项. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足bn=2n﹣1+an(n∈N*),求{bn}的前n项和Sn.