函数定义在区间都有且不恒为零.(1)求的值;(2)若且求证:;(3)若求证:在上是增函数.
(本小题满分14分)
E
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面
A
所成的角为45°,底面ABCD为直角梯形,
D
C
(Ⅰ)求证:平面⊥平面;
(本小题满分12分)在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是,每次命中与否互相独立. (1) 求油罐被引爆的概率. (2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望。
(本小题满分12分)已知函数,当时,有极大值.(1) 求的值; (2)求函数的极小值。
(1) 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆以为圆心、为半径。(I)求直线的参数方程和圆的极坐标方程;(II)试判定直线和圆的位置关系.(2)把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.(3)关于的一元二次方程对任意无实根,求实数的取值范围.
已知函数.(Ⅰ) 若为的极值点,求实数的值;(Ⅱ) 若在上为增函数,求实数的取值范围;(Ⅲ) 若时,方程有实根,求实数的取值范围。