某市准备从7名报名者(其中男4人,女3人)中选3人到三个局任副局长.(1)设所选3人中女副局长人数为X,求X的分布列和数学期望;(2)若选派三个副局长依次到A、B、C三个局上任,求A局是男副局长的情况下,B局为女副局长的概率.
已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示. (1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由; (2)若棱锥E-DFC的体积为,求的值; (3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
把一颗骰子投掷两次,观察掷出的点数,并记第一次掷出的点数为,第二次掷出的点数为.试就方程组(※)解答下列问题: (1)求方程组没有解的概率; (2)求以方程组(※)的解为坐标的点落在第四象限的概率..
如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).
已知是一个公差大于0的等差数列,且满足. (1)求数列的通项公式; (2)若数列和数列满足等式:(n为正整数)求数列的前n项和.
已知函数. (1)解不等式:; (2)当时, 不等式恒成立,求实数的取值范围.