已知等差数列中满足,.(1)求和公差;(2)求数列的前10项的和.
已知关于的不等式的解集是。 (1)求实数的值; (2)若正数满足:,求的最大值。
已知,数列满足:。 (1)用数学归纳法证明:; (2)已知; (3)设Tn是数列{an}的前n项和,试判断Tn与n-3的大小,并说明理由。
已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点 (1)求椭圆C的方程; (2)直线分别切椭圆C与圆(其中)于A.B两点,求|AB|的最大值。
设函数. (Ⅰ)若x=时,取得极值,求的值; (Ⅱ)若在其定义域内为增函数,求的取值范围; (Ⅲ)设,当=-1时,证明在其定义域内恒成立,并证明().
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,,已知AE与平面ABC所成的角为,且. (1)证明:平面ACD平面; (2)记,表示三棱锥A-CBE的体积,求的表达式; (3)当取得最大值时,求二面角D-AB-C的大小.