甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.
如图所示,是正三角形,和都垂直于平面,且,是的中点. 求证:(1)平面; (2).
若的展开式中只有第10项的二项式系数最大, (1)求展开式中系数最大的项; (2)设,求.
甲、乙两队在进行一场五局三胜制的排球比赛中,规定先赢三局的队获胜,并且比赛就此结束,现已知甲、乙两队每比赛一局,甲队获胜的概率为,乙队获胜的概率为,且每局比赛的胜负是相互独立的,问: (1)甲队以获胜的概率是多少? (2)乙队获胜的概率是多少?
在的展开式中,第三项的二项式系数比第二项的二项式系数大35。 (1)求的值;(2)求展开式中的常数项。
已知数列的前项和是二项式展开式中含奇次幂的系数和. (1)求数列的通项公式; (2)设,求的值.