已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的(且),存在,使得,则称具有性质.(1)已知函数,,判断是否具有性质,并说明理由;(2)已知函数 若具有性质,求的最大值;(3)若函数的定义域为,且的图象连续不间断,又满足,求证:对任意且,函数具有性质.
(本小题满分14分)在中,的对边分别为,且. (1)求角的大小; (2)设,为垂足,若,,求的值.
(本小题满分10分)选修4-5:不等式选讲 (1)已知,都是正数,且,求证:; (2)已知,,都是正数,求证:.
(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,圆的参数方程为(为参数). (1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程; (2)已知,圆上任意一点,求面积的最大值.
(本小题满分10分)选修4-1:几何证明选讲 如图所示,为圆的直径,,为圆的切线,,为切点. (1)求证:; (2)若圆的半径为2,求的值.
(本小题满分12分)已知函数,. (1)若,过点作曲线的切线,求的方程; (2)若曲线与直线只有一个交点,求实数的取值范围.