如图,已知椭圆: 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 :(其中)与椭圆 相交于两点,且满足:.(1)试用 表示 ;(2)求 的最大值;(3)若 ,求 的取值范围.
已知是纯虚数,求在复平面内对应点的轨迹
设函数(、为实常数),已知不等式 对任意的实数均成立.定义数列和:=数列的前项和. (I)求、的值; (II)求证: (III)求证:
)已知点、和动点满足:, 且存在正常数,使得 (I)求动点的轨迹的方程; (II)设直线与曲线相交于两点、,且与轴的交点为.若求的值.
已知. (I)当时,解不等式; (II)当时,恒成立,求实数的取值范围.
设数列满足 (I)求数列的通项; (II)设求数列的前项和.