已知抛物线的顶在坐标原点,焦点到直线的距离是(1)求抛物线的方程;(2)若直线与抛物线交于两点,设线段的中垂线与轴交于点 ,求的取值范围.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数=. (1)判断函数的奇偶性,并证明; (2)求的反函数,并求使得函数有零点的实数的取值范围.
(本题满分12分) 已知集合,实数使得集合满足, 求的取值范围.
已知等差数列,是的前项和,且. (1)求的通项公式; (2)设,是的前n项和,是否存在正数,对任意正整数,不等式恒成立?若存在,求的取值范围;若不存在,说明理由. (3)判断方程是否有解,说明理由;
动圆经过定点,且与直线相切。 (1)求圆心的轨迹方程; (2)直线过定点与曲线交于、两点: ①若,求直线的方程; ②若点始终在以为直径的圆内,求的取值范围。
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。 (1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值; (2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,最大?